6533b854fe1ef96bd12af43e

RESEARCH PRODUCT

STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation

Jon Gil-ranedoTorsten BossingClaudia S. BarrosChristian BergerKarolina J. JaworekEleanor Gonzaga

subject

0301 basic medicinereactivationendocrine systemMitosisNerve Tissue ProteinsProtein Serine-Threonine KinasesBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyAnimals Genetically ModifiedPhosphatidylinositol 3-Kinases03 medical and health sciences0302 clinical medicineNeural Stem CellsAnimalsDrosophila ProteinsquiescenceProtein Phosphatase 2lcsh:QH301-705.5Protein kinase BCells CulturedPI3K/AKT/mTOR pathwayTissue homeostasisAdaptor Proteins Signal TransducingCell ProliferationHippo signaling pathwayGene Expression ProfilingHippo signalingInR/PI3K/Akt signalingfungiIntracellular Signaling Peptides and ProteinsBrainSTRIPAK membersProtein phosphatase 2Receptor InsulinNeural stem cellCell biologyDrosophila melanogaster030104 developmental biologylcsh:Biology (General)nervous systemHippo signalingSingle-Cell AnalysisTranscriptomeProto-Oncogene Proteins c-akt030217 neurology & neurosurgeryAdult stem cell

description

Summary Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerborst, maintains NSC quiescence, preventing premature activation of InR/PI3K/Akt signaling. Conversely, an increase in Mob4 and Cka levels promotes NSC reactivation. Mob4 and Cka are essential to recruit PP2A/Mts into a complex with Hippo kinase, resulting in Hippo pathway inhibition. We propose that Mob4/Cka/Mts functions as an intrinsic molecular switch coordinating Hippo and InR/PI3K/Akt pathways and enabling NSC reactivation.

https://doi.org/10.1016/j.celrep.2019.05.023