6533b854fe1ef96bd12af51a
RESEARCH PRODUCT
Effects of Bending on Raman-active Vibration Modes of Carbon Nanotubes
Pekka KoskinenHannu HäkkinenSami Malolasubject
Materials scienceCarbon nanotube actuatorsBent molecular geometryFOS: Physical sciencesNanotechnologyMechanical properties of carbon nanotubes02 engineering and technologyCarbon nanotube01 natural sciencesMolecular physicslaw.inventionsymbols.namesakeNormal modelaw0103 physical sciences010306 general physicsCondensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)Electronic Optical and Magnetic MaterialsOptical properties of carbon nanotubessymbols0210 nano-technologyRaman spectroscopydescription
We investigate vibration modes and their Raman activity of single-walled carbon nanotubes that are bent within their intrinsic elastic limits. By implementing novel boundary conditions for density-functional based tight-binding, and using non-resonant bond polarization theory, we discover that Raman activity can be induced by bending. Depending on the degree of bending, high-energy Raman peaks change their positions and intensities significantly. These effects can be explained by migration of nodes and antinodes along tube circumference. We discuss the challenge of associating the predicted spectral changes with experimental observations.
year | journal | country | edition | language |
---|---|---|---|---|
2008-09-04 |