6533b854fe1ef96bd12af62a

RESEARCH PRODUCT

Elementary Integration of Superelliptic Integrals

Thierry Combot

subject

Coprime integersDegree (graph theory)LogarithmRoot of unity010102 general mathematics68W300102 computer and information sciencesIntegration problem01 natural sciencesCombinatoricsMathematics - Algebraic Geometry010201 computation theory & mathematicsSimple (abstract algebra)Genus (mathematics)FOS: Mathematics[MATH]Mathematics [math]0101 mathematicsAlgebraic Geometry (math.AG)Symbolic integrationMathematics

description

Consider a superelliptic integral $I=\int P/(Q S^{1/k}) dx$ with $\mathbb{K}=\mathbb{Q}(\xi)$, $\xi$ a primitive $k$th root of unity, $P,Q,S\in\mathbb{K}[x]$ and $S$ has simple roots and degree coprime with $k$. Note $d$ the maximum of the degree of $P,Q,S$, $h$ the logarithmic height of the coefficients and $g$ the genus of $y^k-S(x)$. We present an algorithm which solves the elementary integration problem of $I$ generically in $O((kd)^{\omega+2g+1} h^{g+1})$ operations.

https://doi.org/10.1145/3452143.3465540