6533b855fe1ef96bd12afe1e
RESEARCH PRODUCT
Formation of Calcium-Deficient Hydroxyapatite via Hydrolysis of Nano-Sized Pure Α-Tricalcium Phosphate
Una RiekstinaLinda VecbiškenaC.k. Thomas YangKarlis Agris Grosssubject
EthanolMaterials scienceBiocompatibilityInorganic chemistryGeneral Engineeringtechnology industry and agriculturecell responsePhosphateα-tricalcium phosphateSolventHydrolysischemistry.chemical_compoundCrystallinityAmorphous calcium phosphatechemistrycalcium-deficient hydroxyapatiteReactivity (chemistry)Amorphous calcium phosphateNuclear chemistrydescription
Nano-sized pure α-tricalcium phosphate (α-TCP) fabricated by a novel synthesis approach shows great potential for a faster transformation into calcium-deficient hydroxyapatite (CDHA) than conventionally prepared α-TCP. In this work, amorphous tricalcium phosphate precursors were precipitated and treated with a solvent (water or ethanol), and dried (freeze-dried and oven-dried) before heating at 775 °C. Nanosized α-TCP powders were investigated for their phase composition and crystallinity, particle shape and size, reactivity and cellular biocompatibility. Reaction with water showed faster CDHA formation for freeze-dried powder, at 6 hours, compared to ethanol treated powders, whereas a higher biocompatibility was found for pure α-TCP.
year | journal | country | edition | language |
---|---|---|---|---|
2015-07-01 |