6533b855fe1ef96bd12b07ea

RESEARCH PRODUCT

Quantifying Net Synergy/Redundancy of Spontaneous Variability Regulation via Predictability and Transfer Entropy Decomposition Frameworks.

Anielle C. M. TakahashiBeatrice De MariaAparecida Maria CataiVlasta BaripRiccardo EcolomboLuca FaesStefano GuzzettiAlberto PortaFerdinando Raimondi

subject

AdultMaleMultivariate statisticsComputer scienceEntropyBiomedical EngineeringBlood Pressurecomputer.software_genreAutonomic Nervous System01 natural sciences010305 fluids & plasmasHead-Down TiltEntropy (classical thermodynamics)ElectrocardiographyYoung AdultHeart RateBayesian multivariate linear regression0103 physical sciencesStatisticshead-down tilt (HDT)Redundancy (engineering)Entropy (information theory)HumansPredictabilityEntropy (energy dispersal)010306 general physicsEntropy (arrow of time)cardiovascular controlModels StatisticalEntropy (statistical thermodynamics)heart rate variabilityUnivariateSignal Processing Computer-AssistedBaroreflexMiddle Agedhead-up tilt (HUT)Settore ING-INF/06 - Bioingegneria Elettronica E InformaticaTransfer entropyFemaleData miningWiener-Granger causalitycomputerEntropy (order and disorder)

description

Objective: Indexes assessing the balance between redundancy and synergy were hypothesized to be helpful in characterizing cardiovascular control from spontaneous beat-to-beat variations of heart period (HP), systolic arterial pressure (SAP), and respiration (R). Methods: Net redundancy/synergy indexes were derived according to predictability and transfer entropy decomposition strategies via a multivariate linear regression approach. Indexes were tested in two protocols inducing modifications of the cardiovascular regulation via baroreflex loading/unloading (i.e., head-down tilt at −25° and graded head-up tilt at 15°, 30°, 45°, 60°, 75°, and 90°, respectively). The net redundancy/synergy of SAP and R to HP and of HP and R to SAP were estimated over stationary sequences of 256 successive values. Results: We found that: 1) regardless of the target (i.e., HP or SAP) redundancy was prevalent over synergy and this prevalence was independent of type and magnitude of the baroreflex challenge; 2) the prevalence of redundancy disappeared when decoupling inputs from output via a surrogate approach; 3) net redundancy was under autonomic control given that it varied in proportion to the vagal withdrawal during graded head-up tilt; and 4) conclusions held regardless of the decomposition strategy. Conclusion: Net redundancy indexes can monitor changes of cardiovascular control from a perspective completely different from that provided by more traditional univariate and multivariate methods. Significance: Net redundancy measures might provide a practical tool to quantify the reservoir of effective cardiovascular regulatory mechanisms sharing causal influences over a target variable.

10.1109/tbme.2017.2654509https://pubmed.ncbi.nlm.nih.gov/28103546