6533b855fe1ef96bd12b0800

RESEARCH PRODUCT

Convergent Evolution in Intracellular Elements: Plasmids as Model Endosymbionts

Martin KaltenpothChristian KostChristian KostAnne-kathrin Dietel

subject

0301 basic medicineMicrobiology (medical)CytoplasmGenome evolutionGene Transfer HorizontalTree of life (biology)030106 microbiologyBiologyMicrobiologyEvolution Molecular03 medical and health sciencesPlasmidChromosome SegregationVirologyConvergent evolutionExtrachromosomal DNASymbiosisBacteriaHost Microbial InteractionsEndosymbiosisfungiEukaryotaInfectious DiseasesCytoplasmEvolutionary biologyMutationDNA Transposable ElementsEvolutionary ecologyPlasmids

description

Endosymbionts are organisms that live inside the cells of other species. This lifestyle is ubiquitous across the tree of life and is featured by unicellular eukaryotes, prokaryotes, and by extrachromosomal genetic elements such as plasmids. Given that all of these elements dwell in the cytoplasm of their host cell, they should be subject to similar selection pressures. Here we show that strikingly similar features have evolved in both bacterial endosymbionts and plasmids. Since host and endosymbiont are often metabolically tightly intertwined, they are difficult to disentangle experimentally. We propose that using plasmids as tractable model systems can help to solve this problem, thus allowing fundamental questions to be experimentally addressed about the ecology and evolution of endosymbiotic interactions.

https://doi.org/10.1016/j.tim.2018.03.004