6533b856fe1ef96bd12b228b
RESEARCH PRODUCT
Topological characterization of virtual braids
Bruno Aarón Cisneros De La Cruzsubject
Noeuds virtuelsThéorie de groupesVirtual knotsVirtual braidsKnot theoryTresses virtuellesGroup theoryThéorie de noeuds[MATH.MATH-GN] Mathematics [math]/General Topology [math.GN]description
The purpose of this thesis is to give a topological characterization of virtual braids. Virtual braids are equivalence classes of planar braid-like diagrams identified up to isotopy, Reidemeister and virtual Reidemeister moves. The set of virtual braids admits a group structure and is called the virtual braid group. In Chapter 1 we present a general introduction to the theory of virtual knots, and we discuss some properties of virtual braids and their relations with classical braids. In Chapter 2 we introduce braid-Gauss dia- grams, and we prove that they are a good combinatorial reinterpretation of virtual braids. In particular this generalizes some results known in virtual knot theory. As an application, we use braid-Gauss diagrams to recover a well known presentation of the pure virtual braid group. In Chapter 3 we introduce abstract braids and we prove that they are in a bijective cor- respondence with virtual braids. Abstract braids are equivalence classes of braid-like diagrams on an orientable surface with two boundary components. The equivalence relation is generated by isotopy, compatibility, stability and Reidemeister moves. Compatibility is the equivalence relation generated by orientation preserving diffeomorphisms. Stability is the equivalence relation generated by adding handles to or deleting handles from the surface in the complement of the braid-like diagram. In Chapter 4 we prove that for any abstract braid, there is a unique representative of minimal genus, up to compatibility and Reidemeister equivalence. In particular this implies that classical braids embed in abstract braids.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2015-01-01 |