6533b856fe1ef96bd12b273c

RESEARCH PRODUCT

Identification of strongly correlated spin liquid in herbertsmithite

Alfred Z. MsezaneVladimir A. StephanovichGeorge JaparidzeVasily R. ShaginyanVasily R. ShaginyanKonstantin G. Popov

subject

Condensed Matter::Quantum GasesPhysicsQuantum phase transitionQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsRelaxation (NMR)FOS: Physical sciencesGeneral Physics and AstronomyFermionengineering.materialSpinonMagnetic fieldCondensed Matter - Strongly Correlated ElectronsengineeringCondensed Matter::Strongly Correlated ElectronsHerbertsmithiteQuantum spin liquidQuantum Physics (quant-ph)Spin-½

description

Exotic quantum spin liquid (QSL) is formed with such hypothetic particles as fermionic spinons carrying spin 1/2 and no charge. Here we calculate its thermodynamic and relaxation properties. Our calculations unveil the fundamental properties of QSL, forming strongly correlated Fermi system located at a fermion condensation quantum phase transition. These are in a good agreement with experimental data and allow us to detect the behavior of QSL as that observed in heavy fermion metals. We predict that the thermal resistivity of QSL under the application of magnetic fields at fixed temperature demonstrates a very specific behavior. The key features of our findings are the presence of spin-charge separation and QSL formed with itinerant heavy spinons in herbertsmithite.

https://doi.org/10.1209/0295-5075/97/56001