6533b856fe1ef96bd12b325b
RESEARCH PRODUCT
Myocardial Infarction Quantification from Late Gadolinium Enhancement MRI Using Top-Hat Transforms and Neural Networks
Ezequiel De La RosaDésiré SidibéThomas DecourselleThibault LeclercqAlexandre CochetAlain Lalandesubject
FOS: Computer and information sciencesscar segmentationlate gadolinium enhancementIndustrial engineering. Management engineeringComputer Vision and Pattern Recognition (cs.CV)Electronic computers. Computer science[INFO.INFO-IM] Computer Science [cs]/Medical ImagingComputer Science - Computer Vision and Pattern Recognition[INFO.INFO-IM]Computer Science [cs]/Medical Imagingdeep learningQA75.5-76.95T55.4-60.8cardiac magnetic resonancedescription
Significance: Late gadolinium enhanced magnetic resonance imaging (LGE-MRI) is the gold standard technique for myocardial viability assessment. Although the technique accurately reflects the damaged tissue, there is no clinical standard for quantifying myocardial infarction (MI), demanding most algorithms to be expert dependent. Objectives and Methods: In this work a new automatic method for MI quantification from LGE-MRI is proposed. Our novel segmentation approach is devised for accurately detecting not only hyper-enhanced lesions, but also microvascular-obstructed areas. Moreover, it includes a myocardial disease detection step which extends the algorithm for working under healthy scans. The method is based on a cascade approach where firstly, diseased slices are identified by a convolutional neural network (CNN). Secondly, by means of morphological operations a fast coarse scar segmentation is obtained. Thirdly, the segmentation is refined by a boundary-voxel reclassification strategy using an ensemble of CNNs. For its validation, reproducibility and further comparison against other methods, we tested the method on a big multi-field expert annotated LGE-MRI database including healthy and diseased cases. Results and Conclusion: In an exhaustive comparison against nine reference algorithms, the proposal achieved state-of-the-art segmentation performances and showed to be the only method agreeing in volumetric scar quantification with the expert delineations. Moreover, the method was able to reproduce the intra- and inter-observer variability ranges. It is concluded that the method could suitably be transferred to clinical scenarios.
year | journal | country | edition | language |
---|---|---|---|---|
2019-05-28 | Algorithms |