6533b856fe1ef96bd12b36bb

RESEARCH PRODUCT

Tropical Temperate Toughs over southern Africa: mechanisms and evolution in response to climate change

Clémence Macron

subject

changement climatiqueperturbation des moyennes latitudesAfrique australe[SHS.GEO] Humanities and Social Sciences/Geographytropical-temperate toughgeneral circulation modelsRCP 8.5climate change[SDU.STU.CL] Sciences of the Universe [physics]/Earth Sciences/Climatologyclassificationmodèles « système-Terre »talweg tropical-tempérémidlatitude perturbationsCMIP5.CMIP5scale interactionsSouthern Africainteractions d’échelleRCP2.6

description

In the Southern Hemisphere, Southern Africa and the south-west Indian Ocean are one of the three preferred regions where interactions between the tropics and midlatitudes develop. This is the South Indian Convergence Zone (SICZ), where northwest-southeast oriented cloud bands form at the synoptic scale (between 3 and 5 days). These bands are mainly found during the austral summer and are commonly referred to as tropical temperate troughs (TTTs). This research aims at improving our knowledge related to TTTs, with a study on the dynamics associated with these systems, and an analysis of their possible evolution during the 21st century.The first part of this thesis aims at identifying favorable conditions for the formation and the development of TTTs. Weather regimes analysis is used to identify TTTs on the one hand and mid-latitude perturbations on the other hand, allowing us to better document the spatial and temporal variability of TTTs together with background climate conditions. The events identified account for 20% of seasonal rainfall on average. Their contribution increases according to a west to east gradient. The comparison between these two classifications, partitioned using a k-means clustering, first confirms that midlatitude perturbations are a necessary condition for TTT development, but they are not sufficient. An excess of moist static energy over the Mozambique Channel partly supplied by advections from remote regions (mostly the southern Atlantic basin and the south-west Indian Ocean) form additional conditions favoring deep atmospheric convection over and near the Southern Africa.The second part investigates possible changes in precipitation, TTTs and more generally climate over Southern Africa during the 21st century in response to radiative forcing associated with greenhouse gas emissions (GHG). A multi-model (height climate models taken on the IPCC Fifth Assessment Report) and multi-scenario (RCP 8.5 and 2.6) approach is chosen. All models are skillful to reproduce Southern Africa current climate characteristics and cloud bands associated with TTTs, both in terms of spatial variability and frequency of occurrences. During the 21th century, there is no consensus between the models on the future evolution of seasonal rainfall (NDJF). However, all simulate an increase in the amounts precipitated by rainy day over the south-east part of southern Africa. These changes are not related to an evolution of TTTs: their spatial patterns, frequency of occurrences and contribution to rainfall remain stationary throughout the 21st century, but they associated with extreme rainfall events that become more frequent and more intense.

https://theses.hal.science/tel-01130167