6533b857fe1ef96bd12b38d0
RESEARCH PRODUCT
The validity of the “liminf” formula and a characterization of Asplund spaces
Taron ZakaryanAbderrahim Jouranisubject
Bump functionCombinatoricsClosed setApplied MathematicsPseudoconvexityMathematical analysisTangent coneBanach spaceSubderivativeLipschitz continuityAnalysisMathematicsAsplund spacedescription
Abstract We show that for a given bornology β on a Banach space X the following “ lim inf ” formula lim inf x ′ ⟶ C x T β ( C ; x ′ ) ⊂ T c ( C ; x ) holds true for every closed set C ⊂ X and any x ∈ C , provided that the space X × X is ∂ β -trusted. Here T β ( C ; x ) and T c ( C ; x ) denote the β-tangent cone and the Clarke tangent cone to C at x. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Frechet bornology, this “ lim inf ” formula characterizes in fact the Asplund property of X. We use our results to obtain new characterizations of T β -pseudoconvexity of X.
year | journal | country | edition | language |
---|---|---|---|---|
2014-08-01 | Journal of Mathematical Analysis and Applications |