6533b857fe1ef96bd12b3963

RESEARCH PRODUCT

Approximation Operators of Binomial Type

Alexandru Lupas

subject

CombinatoricsPhysicssymbols.namesakeBinomial typeBinomial approximationsymbolsBinomial numberCentral binomial coefficientDelta operatorGaussian binomial coefficientBinomial seriesBinomial coefficient

description

Our objective is to present a unified theory of the approximation operators of binomial type by exploiting the main technique of the so- called “ umbral calculus” or “finite operator calculus” (see [18], [20]-[22]). Let us consider the basic sequence (bn)n≥0 associated to a certain delta operator Q. By supposing that b n (x) ≥ 0, x ∈ [0, ∞), our purpose is to put in evidence some approximation properties of the linear positive operators (L Q n ) n≥1 which are defined on C[0,1] by \( L_n^Qf = \sum\limits_{k = 0}^n {\beta _n^Q{,_k}f\left( {\frac{k}{n}} \right),\beta _{n{,_k}}^Q\left( x \right): = } \frac{1}{{{b_n}\left( n \right)}}\left( {\begin{array}{*{20}{c}} n \\ k \end{array}} \right){b_k}\left( {nx} \right){b_{n - k}}\left( {n - nx} \right).\)

https://doi.org/10.1007/978-3-0348-8696-3_12