6533b857fe1ef96bd12b3a08
RESEARCH PRODUCT
Consolidation and protection by nanolime: recent advances for the conservation of the graffiti, Carceri dello Steri Palermo and of the 18th century lunettes, SS. Giuda e Simone Cloister, Corniola (Empoli)
Eugenio CaponettiLuigi DeiMaria Luisa SaladinoEmiliano CarrettiFabrizio AndriuloDelia Francesca Chillura MartinoIrene Natalisubject
ArcheologyMaterials scienceAbsorption of waterConsolidation (soil)Small-angle X-ray scatteringScanning electron microscopeMaterials Science (miscellaneous)DispersityMetallurgyWall paintings conservationNanoparticleConservationNanoscienceChemistry (miscellaneous)Transmission electron microscopyPorous materialsSelected area diffractionComposite materialNanotechnologieGeneral Economics Econometrics and FinanceSpectroscopyConsolidationNanolimeSettore CHIM/02 - Chimica Fisicadescription
Abstract Nanolime dispersed in 2-propanol was extensively used for the consolidation of wall paintings. The knowledge of the advances of this methodology dealing with all the possible effects associated with the nanolime new material in conservation is fundamental to assess and improve the technique. In this paper, four different dispersions of Ca(OH) 2 nanoparticles were characterised by Small Angle X-rays Scattering technique (SAXS) and Transmission Electron Microscopy (TEM) in order to achieve information on size, shape, polydispersity, agglomeration, and crystal structure (by SAED patterns) of the particles. Once characterised, the dispersions were tested in two different case studies, the Carceri dello Steri in Palermo with their graffiti and the 18th century lunettes at the SS. Giuda e Simone Cloister, Corniola (Empoli) with their lime-based mural paintings. The treated samples were characterised in relationship to either their morphology and surface chemical composition by Scanning Electron Microscopy coupled with Energy Dispersive X-rays spectroscopy (SEM-EDX), or their water absorption and mechanical properties (resistance to material abrasion). The results obtained showed that all the dispersions were nanometrically structured and their application succeeded in recovering the mechanical properties of the painting or graffito layers, not altering their permeability to water and keeping perfectly the wall transpiration. However, the dispersions constituted of the nanoparticles obtained via a synthesis able to control size and shape of the Ca(OH) 2 particles resulted in a better performance in situ , even if the differences found by SAXS and TEM were slight.
year | journal | country | edition | language |
---|---|---|---|---|
2014-03-01 |