6533b857fe1ef96bd12b3c9a

RESEARCH PRODUCT

Constitutive Numerical Model of FRCM Strips Under Traction

Lidia La MendolaMaria Concetta OddoAlessia MonacoJennifer D'annaGiovanni Minafò

subject

Materials scienceGeography Planning and DevelopmentTraction (engineering)0211 other engineering and technologiesNumerical modelingFRCM tensile behavior numerical modeling experimental tests interface modeling020101 civil engineering02 engineering and technologySTRIPSFRCM0201 civil engineeringlaw.inventionlcsh:HT165.5-169.9lawUltimate tensile strengthmedicinetensile behaviorComposite material021110 strategic defence & security studiesStiffnessexperimental testsBuilding and Constructionlcsh:City planningFinite element methodUrban StudiesTensile behaviornumerical modelinglcsh:TA1-2040experimental tests; FRCM; interface modeling; numerical modeling; tensile behaviorFe modelmedicine.symptominterface modelinglcsh:Engineering (General). Civil engineering (General)

description

In this paper, the tensile behavior of Fiber Reinforced Cementitious Matrix (FRCM) strips is investigated through Finite Element (FE) models. The most adopted numerical modeling approaches for the simulation of the fiber-matrix interface law are described. Among them, the cohesive model is then used for the generation of FE models which are able to simulate the response under traction of FRCM strips tested in laboratory whose results are available in the technical literature. Tests on basalt, PBO and carbon coated FRCM specimens are taken into account also considering different mechanical ratios of the textile reinforcement. The comparison between FE results and experimental data allows validating the adopted numerical modeling approach. Finally, some considerations are provided on the effects of the fiber fabric mechanical ratio and the strength and stiffness of the interface on the tensile capacity of the FRCM strips.

10.3389/fbuil.2020.00060https://www.frontiersin.org/article/10.3389/fbuil.2020.00060/full