6533b857fe1ef96bd12b4439

RESEARCH PRODUCT

Non-uniform multivariate embedding to assess the information transfer in cardiovascular and cardiorespiratory variability series

Alberto PortaGiandomenico NolloLuca Faes

subject

Multivariate statisticsSupine positionMultivariate analysisQuantitative Biology::Tissues and OrgansTime delay embeddingPhysics::Medical PhysicsPostureBlood PressureHealth InformaticsCardiovascular Physiological PhenomenaGranger causalityPosition (vector)StatisticsHumansCardiovascular interactionMathematicsConditional entropySeries (mathematics)RespirationModels CardiovascularReproducibility of ResultsSignal Processing Computer-AssistedComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science ApplicationsNonlinear systemNonlinear DynamicsMultivariate AnalysisSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityMultivariate time serieConditional entropyAlgorithmAlgorithms

description

The complexity of the short-term cardiovascular control prompts for the introduction of multivariate (MV) nonlinear time series analysis methods to assess directional interactions reflecting the underlying regulatory mechanisms. This study introduces a new approach for the detection of nonlinear Granger causality in MV time series, based on embedding the series by a sequential, non-uniform procedure, and on estimating the information flow from one series to another by means of the corrected conditional entropy. The approach is validated on short realizations of linear stochastic and nonlinear deterministic processes, and then evaluated on heart period, systolic arterial pressure and respiration variability series measured from healthy humans in the resting supine position and in the upright position after head-up tilt. © 2011 Elsevier Ltd.

10.1016/j.compbiomed.2011.02.007http://hdl.handle.net/10447/276732