6533b857fe1ef96bd12b44db

RESEARCH PRODUCT

Acid‐Cleavable Poly(ethylene glycol) Hydrogels Displaying Protein Release at pH 5

Holger FreyJan BlankenburgHannah PohlitHannah PohlitJohannes EwaldLaura BeschWolfgang TremelRonald E. UngerMatthias Worm

subject

540 Chemistry and allied sciencesVinyl CompoundsBiocompatible MaterialsDegree of polymerization010402 general chemistry01 natural sciencesCatalysisPolyethylene GlycolsPolymerizationchemistry.chemical_compoundHydrolysisPolymer chemistryPEG ratioCopolymermedicinehydrogelsPolymer Technologieschemistry.chemical_classificationFull PaperEthylene oxide010405 organic chemistryHydrolysisOrganic ChemistryBiochemistry and Molecular BiologyProteinsprotein releaseHydrogelsGeneral ChemistryPolymerFull PapersHydrogen-Ion ConcentrationVinyl etherPolymerteknologiPEG0104 chemical sciencescopolymerizationchemistry540 Chemiedrug deliverySelf-healing hydrogelsMethacrylatesBiokemi och molekylärbiologimedicine.drug

description

Abstract PEG is the gold standard polymer for pharmaceutical applications, however it lacks degradability. Degradation under physiologically relevant pH as present in endolysosomes, cancerous and inflammatory tissues is crucial for many areas. The authors present anionic ring‐opening copolymerization of ethylene oxide with 3,4‐epoxy‐1‐butene (EPB) and subsequent modification to introduce acid‐degradable vinyl ether groups as well as methacrylate (MA) units, enabling radical cross‐linking. Copolymers with different molar ratios of EPB, molecular weights (M n) up to 10 000 g mol−1 and narrow dispersities (Đ<1.05) were prepared. Both the P(EG‐co‐isoEPB)MA copolymer and the hydrogels showed pH‐dependent, rapid hydrolysis at pH 5–6 and long‐term storage stability at neutral pH (pH 7.4). By designing the degree of polymerization and content of degradable vinyl ether groups, the release time of an entrapped protein OVA‐Alexa488 can be tailored from a few hours to several days (hydrolysis half‐life time t 1/2 at pH 5: 13 h to 51 h).

https://doi.org/10.1002/chem.201905310