6533b857fe1ef96bd12b4629

RESEARCH PRODUCT

Implementation of analytic gradients for CCSD and EOM-CCSD using Cholesky decomposition of the electron-repulsion integrals and their derivatives: Theory and benchmarks.

Evgeny EpifanovskyAnna I. KrylovJürgen GaussXintian Feng

subject

Physics010304 chemical physicsSubstitution (logic)General Physics and AstronomyContext (language use)Electron010402 general chemistry01 natural sciences0104 chemical sciences0103 physical sciencesBenchmark (computing)Applied mathematicsPhysical and Theoretical ChemistryReduction (mathematics)Cholesky decomposition

description

We present a general formulation of analytic nuclear gradients for the coupled-cluster with single and double substitution (CCSD) and equation-of-motion (EOM) CCSD energies computed using Cholesky decomposition (CD) representations of the electron repulsion integrals. By rewriting the correlated energy and response equations such that the storage of the largest four-index intermediates is eliminated, CD leads to a significant reduction in disk storage requirements, reduced I/O penalties, and an improved parallel performance. CD thus extends the scope of the systems that can be treated by (EOM-)CCSD methods, although analytic gradients in the framework of CD are needed to extend the applicability of (EOM-)CCSD methods in the context of geometry optimizations. This paper presents a formulation of analytic (EOM-)CCSD gradient within the CD framework and reports on the salient details of the corresponding implementation. The accuracy and the capabilities of analytic CD-based (EOM-)CCSD gradients are illustrated by benchmark calculations and several illustrative examples.

10.1063/1.5100022https://pubmed.ncbi.nlm.nih.gov/31272185