6533b858fe1ef96bd12b5a9d
RESEARCH PRODUCT
A Symplectic Kovacic's Algorithm in Dimension 4
Camilo SanabriaThierry Combotsubject
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]010102 general mathematicsDynamical Systems (math.DS)Differential operator01 natural sciencesSymplectic matrixDifferential Galois theory34M15Operator (computer programming)Fundamental matrix (linear differential equation)Mathematics - Symplectic Geometry0103 physical sciencesFOS: MathematicsSymplectic Geometry (math.SG)010307 mathematical physicsMathematics - Dynamical Systems0101 mathematicsAlgebraically closed fieldAlgebraic numberMathematics::Symplectic GeometryAlgorithmMathematicsSymplectic geometrydescription
Let $L$ be a $4$th order differential operator with coefficients in $\mathbb{K}(z)$, with $\mathbb{K}$ a computable algebraically closed field. The operator $L$ is called symplectic when up to rational gauge transformation, the fundamental matrix of solutions $X$ satisfies $X^t J X=J$ where $J$ is the standard symplectic matrix. It is called projectively symplectic when it is projectively equivalent to a symplectic operator. We design an algorithm to test if $L$ is projectively symplectic. Furthermore, based on Kovacic's algorithm, we design an algorithm that computes Liouvillian solutions of projectively symplectic operators of order $4$. Moreover, using Klein's Theorem, algebraic solutions are given as pullbacks of standard hypergeometric equations.
year | journal | country | edition | language |
---|---|---|---|---|
2018-07-16 | Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation |