6533b858fe1ef96bd12b659f

RESEARCH PRODUCT

Steepest entropy ascent for two-state systems with slowly varying Hamiltonians.

Benedetto Militello

subject

PhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciPrinciple of maximum entropyAvoided crossingNon-linear dynamicAdiabatic EvolutionsNon-equilibrium thermodynamicsFOS: Physical sciences01 natural sciencesUnitary stateSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasAdiabatic theoremNonlinear systemThermalisation0103 physical sciencesStatistical physics010306 general physicsQuantum Physics (quant-ph)Entropy (arrow of time)Statistical and Nonlinear PhysicNon-Equilibrium thermodynamic

description

The steepest entropy ascent approach is considered and applied to two-state systems. When the Hamiltonian of the system is time-dependent, the principle of maximum entropy production can still be exploited; arguments to support this fact are given. In the limit of slowly varying Hamiltonians, which allows for the adiabatic approximation for the unitary part of the dynamics, the system exhibits significant robustness to the thermalization process. Specific examples such as a spin in a rotating field and a generic two-state system undergoing an avoided crossing are considered.

10.1103/physreve.97.052113https://pubmed.ncbi.nlm.nih.gov/29906942