6533b858fe1ef96bd12b65e5
RESEARCH PRODUCT
Spin Chains with Non-Diagonal Boundaries and Trigonometric SOS Model with Reflecting End
Nikolai KitanineGhali Filalisubject
High Energy Physics - TheorySOS modelsspin chainsDiagonalFOS: Physical sciencesBoundary (topology)algebraic Bethe ansatzMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Boundary value problemGauge theoryMathematical PhysicsEigenvalues and eigenvectorsMathematicsSpin-½Partition function (statistical mechanics)Nonlinear Sciences - Exactly Solvable and Integrable Systemslcsh:MathematicsMathematical analysisMathematical Physics (math-ph)lcsh:QA1-939dynamical reflection algebraTransformation (function)High Energy Physics - Theory (hep-th)Geometry and TopologyExactly Solvable and Integrable Systems (nlin.SI)Analysisdescription
In this paper we consider two a priori very different problems: construction of the eigenstates of the spin chains with non parallel boundary magnetic fields and computation of the partition function for the trigonometric solid-on-solid (SOS) model with one reflecting end and domain wall boundary conditions. We show that these two problems are related through a gauge transformation (so-called vertex-face transformation) and can be solved using the same dynamical reflection algebras.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2011-01-01 | Symmetry, Integrability and Geometry: Methods and Applications |