6533b859fe1ef96bd12b6ebc
RESEARCH PRODUCT
Combining a Context Aware Neural Network with a Denoising Autoencoder for Measuring String Similarities
Mehdi Ben LazregMorten Goodwinsubject
FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Computation and LanguageComputer Science - Artificial IntelligenceComputation and Language (cs.CL)Information Retrieval (cs.IR)Machine Learning (cs.LG)Computer Science - Information Retrievaldescription
Measuring similarities between strings is central for many established and fast growing research areas including information retrieval, biology, and natural language processing. The traditional approach for string similarity measurements is to define a metric over a word space that quantifies and sums up the differences between characters in two strings. The state-of-the-art in the area has, surprisingly, not evolved much during the last few decades. The majority of the metrics are based on a simple comparison between character and character distributions without consideration for the context of the words. This paper proposes a string metric that encompasses similarities between strings based on (1) the character similarities between the words including. Non-Standard and standard spellings of the same words, and (2) the context of the words. Our proposal is a neural network composed of a denoising autoencoder and what we call a context encoder specifically designed to find similarities between the words based on their context. The experimental results show that the resulting metrics succeeds in 85.4\% of the cases in finding the correct version of a non-standard spelling among the closest words, compared to 63.2\% with the established Normalised-Levenshtein distance. Besides, we show that words used in similar context are with our approach calculated to be similar than words with different contexts, which is a desirable property missing in established string metrics.
year | journal | country | edition | language |
---|---|---|---|---|
2018-07-16 |