6533b859fe1ef96bd12b6f16

RESEARCH PRODUCT

Combined Experimental and Theoretical Investigation of Heating Rate on Growth of Iron Oxide Nanoparticles

Raffaello PotestioDavide DonadioAnielen Halda RibeiroGerhard JakobWolfgang TremelHamed Sharifi DehsariMaziar HeidariKamal Asadi

subject

Materials scienceGeneral Chemical EngineeringDispersityNanoparticleNanotechnologyCrystal growthBioengineering02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundEngineeringMaterials ChemistryNanotechnologyMaterialsThermal decompositionGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringchemistryChemical SciencesParticle sizeClassical nucleation theory0210 nano-technologyIron oxide nanoparticlesSuperparamagnetism

description

Thermal decomposition is a promising route for the synthesis of highly monodisperse magnetite nanoparticles. However, the apparent simplicity of the synthesis is counterbalanced by the complex interplay of the reagents with the reaction variables that determine the final particle size and dispersity. Here, we present a combined experimental and theoretical study on the influence of the heating rate on crystal growth, size, and monodispersity of iron oxide nanoparticles. We synthesized monodisperse nanoparticles with sizes varying from 6.3 to 27 nm simply by controlling the heating rate of the reaction. The nanoparticles show size-dependent superparamagnetic behavior. Using numerical calculations based on the classical nucleation theory and growth model, we identified the relative time scales associated with the heating rate and precursor-to-monomer (growth species) conversion rate as a decisive factor influencing the final size and dispersity of the nanoparticles.

https://escholarship.org/uc/item/6mn2w96v