6533b859fe1ef96bd12b6f3f

RESEARCH PRODUCT

Quantum search by parallel eigenvalue adiabatic passage

Stéphane GuérinNicolas J. CerfDavid Daems

subject

PhysicsQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]FOS: Physical sciencesAdiabatic quantum computation01 natural sciencesAtomic and Molecular Physics and OpticsQuantum search010305 fluids & plasmassymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Search algorithmQuantum mechanics0103 physical sciencesComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONsymbolsStatistical physics010306 general physicsAdiabatic processHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Eigenvalues and eigenvectors[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]ComputingMilieux_MISCELLANEOUSQuantum computer

description

We propose a strategy to achieve the Grover search algorithm by adiabatic passage in a very efficient way. An adiabatic process can be characterized by the instantaneous eigenvalues of the pertaining Hamiltonian, some of which form a gap. The key to the efficiency is based on the use of parallel eigenvalues. This allows us to obtain non-adiabatic losses which are exponentially small, independently of the number of items in the database in which the search is performed.

https://hal.archives-ouvertes.fr/hal-00453518