6533b85afe1ef96bd12b943e
RESEARCH PRODUCT
The Variation of the Fractional Maximal Function of a Radial Function
Hannes LuiroJosé MadridJosé Madridsubject
CombinatoricsRadial functionGeneral Mathematics010102 general mathematicsMaximal operatorBeta (velocity)Maximal function0101 mathematics01 natural sciencesMathematicsdescription
Abstract In this article, we study the regularity of the non-centered fractional maximal operator $M_{\beta}$. As the main result, we prove that there exists $C(n,\beta)$ such that if $q=n/(n-\beta)$ and $f$ is radial function, then $\|DM_{\beta}f\|_{L^{q}({\mathbb{R}^n})}\leq C(n,\beta)\|Df\|_{L^{1}({\mathbb{R}^n})}$. The corresponding result was previously known only if $n=1$ or $\beta=0$. Our proofs are almost free from one-dimensional arguments. Therefore, we believe that the new approach may be very useful when trying to extend the result for all $f\in W^{1,1}({\mathbb{R}^n})$.
year | journal | country | edition | language |
---|---|---|---|---|
2017-10-12 | International Mathematics Research Notices |