6533b85afe1ef96bd12b9442
RESEARCH PRODUCT
false
subject
Applied Mathematics010102 general mathematicsMathematical analysisDisjoint setsConductivityInverse problemRandom walk01 natural sciencesDomain (mathematical analysis)Schrödinger equation010101 applied mathematicssymbols.namesakeBounded functionsymbolsUniqueness0101 mathematicsAnalysisMathematicsdescription
Abstract This paper shows global uniqueness in two inverse problems for a fractional conductivity equation: an unknown conductivity in a bounded domain is uniquely determined by measurements of solutions taken in arbitrary open, possibly disjoint subsets of the exterior. Both the cases of infinitely many measurements and a single measurement are addressed. The results are based on a reduction from the fractional conductivity equation to the fractional Schrodinger equation, and as such represent extensions of previous works. Moreover, a simple application is shown in which the fractional conductivity equation is put into relation with a long jump random walk with weights.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2020-04-01 | Nonlinear Analysis: Theory, Methods & Applications |