6533b85afe1ef96bd12ba060

RESEARCH PRODUCT

Modulation of Human Motor Cortical Excitability and Plasticity by Opuntia Ficus Indica Fruit Consumption: Evidence from a Preliminary Study through Non-Invasive Brain Stimulation

Giuditta GambinoFilippo BrighinaMario AllegraMaurizio MarraleGiorgio ColluraCesare GagliardoAlessandro AttanzioLuisa TesoriereDanila Di MajoGiuseppe FerraroPierangelo SardoGiuseppe Giglia

subject

non-invasive brain stimulationNeuronal PlasticityNutrition and DieteticsMotor CortexindicaxanthinSettore MED/37 - NeuroradiologiaOpuntiabrain foodEvoked Potentials MotorTranscranial Direct Current StimulationSettore BIO/09 - FisiologiaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)homeostatic plasticityTMSSettore BIO/10 - BiochimicaFruitCortical Excitabilitynon-invasive brain stimulation; TMS; a-tDCS; indicaxanthin; brain food; cortical excitability; homeostatic plasticitya-tDCSHumansSettore MED/26 - NeurologiaFood Science

description

Indicaxanthin (IX) from Opuntia Ficus Indica (OFI) has been shown to exert numerous biological effects both in vitro and in vivo, such as antioxidant, anti-inflammatory, neuro-modulatory activity in rodent models. Our goal was to investigate the eventual neuro-active role of orally assumed fruits containing high levels of IX at nutritionally-relevant amounts in healthy subjects, exploring cortical excitability and plasticity in the human motor cortex (M1). To this purpose, we applied paired-pulse transcranial magnetic stimulation and anodal transcranial direct current stimulation (a-tDCS) in basal conditions and followed the consumption of yellow cactus pear fruits containing IX or white cactus pear fruits devoid of IX (placebo). Furthermore, resting state-functional MRI (rs-fMRI) preliminary acquisitions were performed before and after consumption of the same number of yellow fruits. Our data revealed that the consumption of IX-containing fruits could specifically activate intracortical excitatory circuits, differently from the placebo-controlled group. Furthermore, we found that following the ingestion of IX-containing fruits, elevated network activity of glutamatergic intracortical circuits can homeostatically be restored to baseline levels following a-tDCS stimulation. No significant differences were observed through rs-fMRI acquisitions. These outcomes suggest that IX from OFI increases intracortical excitability of M1 and leads to homeostatic cortical plasticity responses.

10.3390/nu14224915https://dx.doi.org/10.3390/nu14224915