6533b85bfe1ef96bd12ba193
RESEARCH PRODUCT
Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions
Marco CursiJosé Manuel García-verdugoAlessandro BulfoneManuela CominelliClara Alfaro-cervelloMarco CambiaghiLetizia LeocaniRossella GalliLaura MagriPietro Luigi PolianiFabio MinicucciMauro Palasubject
Telencephaloncongenital hereditary and neonatal diseases and abnormalitiesCellular differentiationNeuroepithelial CellsEmbryonic DevelopmentBiologyTuberous Sclerosis Complex 1 Proteinmurine modelCerebral VentriclesMiceNeural Stem CellsCell MovementTuberous SclerosismedicineGeneticsAnimalsAnimals; Animals Newborn; Cell Differentiation; Cell Movement; Cell Proliferation; Cerebral Ventricles; Embryonic Development; Embryonic Stem Cells; Epilepsy; Gene Silencing; Gene Targeting; Megalencephaly; Mice; Mutation; Neural Stem Cells; Neuroepithelial Cells; Neurons; TOR Serine-Threonine Kinases; Telencephalon; Tuberous Sclerosis; Tuberous Sclerosis Complex 1 Protein; Tumor Suppressor Proteins; Signal TransductionGene SilencingNeural cellPI3K/AKT/mTOR pathwayEmbryonic Stem CellsCell ProliferationNeuronsEpilepsymTOR; Neural Stem Cells; Tuberous Sclerosis; murine modelTOR Serine-Threonine KinasesTumor Suppressor ProteinsCell DifferentiationCell BiologyNewbornEmbryonic stem cellNeural stem cellMegalencephalyCell biologynervous system diseasesNeuroepithelial cellmedicine.anatomical_structureAnimals NewbornImmunologyGene TargetingMutationmTORMolecular MedicineTSC1TSC2Signal Transductiondescription
SummaryTuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by hamartomatous neurological lesions that exhibit abnormal cell proliferation and differentiation. Hyperactivation of mTOR pathway by mutations in either the Tsc1 or Tsc2 gene underlies TSC pathogenesis, but involvement of specific neural cell populations in the formation of TSC-associated neurological lesions remains unclear. We deleted Tsc1 in Emx1-expressing embryonic telencephalic neural stem cells (NSCs) and found that mutant mice faithfully recapitulated TSC neuropathological lesions, such as cortical lamination defects and subependymal nodules (SENs). These alterations were caused by enhanced generation of SVZ neural progeny, followed by their premature differentiation and impaired maturation during both embryonic and postnatal development. Notably, mTORC1-dependent Akt inhibition and STAT3 activation were involved in the reduced self-renewal and earlier neuronal and astroglial differentiation of mutant NSCs. Thus, finely tuned mTOR activation in embryonic NSCs may be critical to prevent development of TSC-associated brain lesions.
year | journal | country | edition | language |
---|---|---|---|---|
2011-11-01 |