6533b85bfe1ef96bd12ba1a2

RESEARCH PRODUCT

Ant colony optimisation for planning safe escape routes

Jaziar RadiantiOle-christopher GranmoSondre GlimsdalParvaneh SarsharMorten Goodwin

subject

Emergency personnelVDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413Operations researchSmart phoneComputer scienceEvent (computing)VDP::Technology: 500::Information and communication technology: 550Ant colonyComputer securitycomputer.software_genreHazard (computer architecture)Emergency situationscomputerWireless sensor network

description

Published version of a chapter from the volume: Recent Trends in Applied Artificial Intelligence. Also available on SpringerLink: http://dx.doi.org/10.1007/978-3-642-38577-3_6 An emergency requiring evacuation is a chaotic event filled with uncertainties both for the people affected and rescuers. The evacuees are often left to themselves for navigation to the escape area. The chaotic situation increases when a predefined escape route is blocked by a hazard, and there is a need to re-think which escape route is safest. This paper addresses automatically finding the safest escape route in emergency situations in large buildings or ships with imperfect knowledge of the hazards. The proposed solution, based on Ant Colony Optimisation, suggests a near optimal escape plan for every affected person — considering both dynamic spread of hazards and congestion avoidance.The solution can be used both on an individual bases, such as from a personal smart phone of one of the evacuees, or from a remote location by emergency personnel trying to assist large groups.

http://hdl.handle.net/11250/138004