6533b85bfe1ef96bd12ba242

RESEARCH PRODUCT

Raman characterization of Pb2Na1−xLaxNb5−xFexO15 and Pb0.5(5−x)LaxNb5−xFexO15 (0≤x≤1) solid solutions

A. BoukhariM. BouzianeMhamed TaibiLucien Saviot

subject

010302 applied physicsMaterials science[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Analytical chemistrychemistry.chemical_element02 engineering and technologyAtmospheric temperature rangeTungsten021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFerroelectricitySpectral lineElectronic Optical and Magnetic Materialssymbols.namesakechemistry0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]symbolsElectrical and Electronic Engineering0210 nano-technologySpectroscopyRaman spectroscopyRaman scatteringSolid solution

description

Abstract The ferroelectric compounds Pb 2 Na 1− x La x Nb 5− x Fe x O 15 and Pb 0.5(5− x ) La x Nb 5− x Fe x O 15 (0≤ x ≤1) with the tungsten bronze type structure have been investigated using Raman spectroscopy. The evolution of the spectra as a function of composition at room temperature is reported. In the frequency range 200–1000 cm −1 three main A 1 phonons around 240 ( υ 1 ), 630 ( υ 2 ) and 816 ( υ 3 ) cm −1 were observed. The broadening of the Raman lines for high values of x originates from a significant structural disorder. This is in good agreement with the relaxor character of these compositions. The lowest-frequency part of the spectra, below 180 cm −1 , reveals a structural change in the studied solid solutions. The behaviour of the Raman shift of the υ 1 mode confirms that in Pb 2 Na 1− x La x Nb 5− x Fe x O 15 , a clear anomaly occurs in the vicinity of x =0.4.

https://doi.org/10.1016/j.physb.2011.08.025