6533b85bfe1ef96bd12ba2a4

RESEARCH PRODUCT

Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for Regenerative Medicine?

Patrizia CancemiFabiana GeraciMaria Magdalena Barreca

subject

ScaffoldInduced Pluripotent Stem Cellsregenerative medicineStimulationReviewBiologyRegenerative medicineExtracellular VesiclesParacrine signallingstem cellsAnimalsHumansInduced pluripotent stem celllcsh:QH301-705.5mesenchymal stem cells (MSCs)Regeneration (biology)Mesenchymal stem cellBiological TransportMesenchymal Stem CellsGeneral MedicineCell biologylcsh:Biology (General)induced pluripotent stem cells (iPSCs)extracellular vesicleStem cellStem Cell Transplantation

description

Regenerative medicine aims to repair damaged, tissues or organs for the treatment of various diseases, which have been poorly managed with conventional drugs and medical procedures. To date, multimodal regenerative methods include transplant of healthy organs, tissues, or cells, body stimulation to activate a self-healing response in damaged tissues, as well as the combined use of cells and bio-degradable scaffold to obtain functional tissues. Certainly, stem cells are promising tools in regenerative medicine due to their ability to induce de novo tissue formation and/or promote organ repair and regeneration. Currently, several studies have shown that the beneficial stem cell effects, especially for mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) in damaged tissue restore are not dependent on their engraftment and differentiation on the injury site, but rather to their paracrine activity. It is now well known that paracrine action of stem cells is due to their ability to release extracellular vesicles (EVs). EVs play a fundamental role in cell-to-cell communication and are directly involved in tissue regeneration. In the present review, we tried to summarize the molecular mechanisms through which MSCs and iPSCs-derived EVs carry out their therapeutic action and their possible application for the treatment of several diseases.

https://doi.org/10.3390/cells9051163