6533b85bfe1ef96bd12ba6aa

RESEARCH PRODUCT

Local monomialization of generalized real analytic functions

Rafael Martín Villaverde

subject

[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]resolution of singularitiesRésolution des singularités[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM][MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Local monomializationUniformisation locale[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]local uniformization[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]

description

Generalized power series extend the notion of formal power series by considering exponents ofeach variable ranging in a well ordered set of positive real numbers. Generalized analytic functionsare defined locally by the sum of convergent generalized power series with real coe cients. Weprove a local monomialization result for these functions: they can be transformed into a monomialvia a locally finite collection of finite sequences of local blowingsup. For a convenient frameworkwhere this result can be established, we introduce the notion of generalized analytic manifoldand the correct definition of blowing-up in this category.

https://tel.archives-ouvertes.fr/tel-01150953