6533b85bfe1ef96bd12bab6e
RESEARCH PRODUCT
The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras
Emmanuel WagnerL. Poulain D'andecysubject
MSC: Primary 57M27: Invariants of knots and 3-manifolds Secondary 20C08: Hecke algebras and their representations 20F36: Braid groups; Artin groups 57M25: Knots and links in $S^3$Pure mathematicsMarkov chainGeneral Mathematics010102 general mathematicsYokonuma-Hecke algebrasGeometric Topology (math.GT)Linking numbers01 natural sciencesMathematics::Geometric TopologyMatrix (mathematics)Mathematics - Geometric TopologyMarkov tracesMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Link (knot theory)Mathematics - Representation TheoryMathematicsdescription
We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.
year | journal | country | edition | language |
---|---|---|---|---|
2016-06-01 |