6533b85bfe1ef96bd12bbeca

RESEARCH PRODUCT

Short-range neutrinoless double beta decay mechanisms

J. KotilaFrancesco IachelloFrank F. DeppischLukas Graf

subject

Particle physicsNuclear TheoryField (physics)Physics beyond the Standard Modeldouble beta decayFOS: Physical sciencesElectron01 natural sciencesneutrinoless double beta decayNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciences010306 general physicsPhysicsta114electroweak interaction010308 nuclear & particles physicsneutrino interactionsHigh Energy Physics::PhenomenologyForm factor (quantum field theory)3. Good healthHigh Energy Physics - PhenomenologyMAJORANAelectroweak interactions in nuclear physicsPhase spaceHigh Energy Physics::ExperimentNeutrino

description

Neutrinoless double beta decay can significantly help to shed light on the issue of non-zero neutrino mass, as observation of this lepton number violating process would imply neutrinos are Majorana particles. However, the underlying interaction does not have to be as simple as the standard neutrino mass mechanism. The entire variety of neutrinoless double beta decay mechanisms can be approached effectively. In this work we focus on a theoretical description of short-range effective contributions to neutrinoless double beta decay, which are equivalent to 9-dimensional effective operators incorporating the appropriate field content. We give a detailed derivation of the nuclear matrix elements and phase space factors corresponding to individual terms of the effective Lagrangian. Using these, we provide general formulae for the neutrinoless double beta decay half-life and angular correlation of the outgoing electrons.

https://doi.org/10.1103/physrevd.98.095023