6533b85bfe1ef96bd12bbf6a

RESEARCH PRODUCT

Spin-orbit torques in strained PtMnSb from first principles

Yuriy MokrousovYuriy MokrousovStefan BlügelFrank FreimuthFrank Freimuth

subject

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsStrain (chemistry)Ab initioMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetizationTetragonal crystal systemCondensed Matter::Materials Science0103 physical sciencesOrbit (dynamics)Shear stressAstrophysics::Solar and Stellar Astrophysicsddc:530Sensitivity (control systems)010306 general physics0210 nano-technologySpin-½

description

We compute spin-orbit torques (SOTs) in strained PtMnSb from first principles. We consider both tetragonal strain and shear strain. We find a strong linear dependence of the field-like SOTs on these strains, while the antidamping SOT is only moderately sensitive to shear strain and even insensitive to tetragonal strain. We also study the dependence of the SOT on the magnetization direction. In order to obtain analytical expressions suitable for fitting our numerical \textit{ab-initio} results we derive a general expansion of the SOT in terms of all response tensors that are allowed by crystal symmetry. Our expansion includes also higher-order terms beyond the usually considered lowest order. We find that the dependence on the strain is much smaller for the higher-order terms than for the lowest order terms. In order to judge the sensitivity of the SOT on the exchange correlation potential we compute the SOT in both GGA and LDA. We find that the higher-order terms depend significantly on the exchange-correlation potential, while the lowest order terms are insensitive to it. Since the higher-order terms are small in comparison to the lowest order terms the total SOT is insensitive to the exchange correlation potential in strained PtMnSb.

10.1103/physrevb.103.224414http://arxiv.org/abs/2103.15663