6533b85cfe1ef96bd12bc9dd
RESEARCH PRODUCT
IAPs: more than just inhibitors of apoptosis proteins.
Laurence Dubrez-dalozJessy CartierAlban Dupouxsubject
musculoskeletal diseasesProteasesCell signalingvirusesCellular differentiationApoptosisModels BiologicalInhibitor of Apoptosis ProteinsCell MovementCellular stress responseMolecular BiologyCaspaseCell ProliferationbiologyCell DifferentiationCell BiologyCell biologyXIAPbody regionsApoptosisCaspasesbiology.proteinbiological phenomena cell phenomena and immunitySignal transductionDevelopmental BiologySignal Transductiondescription
Inhibitors of apoptosis proteins (IAPs) are a conserved family of proteins identified in species ranging from virus, yeasts, nematodes, fishes, flies and mammals. The common structural feature is the presence of at least one Baculovirus IAP Repeat (BIR) domain. Hence, IAPs are also known as BIR-containing proteins (BIRCs). Most of them display anti-apoptotic properties when overexpressed. In drosophila, IAPs are sufficient and necessary to promote cell survival through a direct regulation of apoptotic proteases called caspases. In mammals, BIRC4/XIAP, the most studied IAP member can directly inhibit the activity of caspase-3, 7 and 9. However, this activity is not conserved in other IAPs and physiological relevancies of such anti-caspase activities are still discussed. A detailed analysis of IAP-deficient mice or derived cells, deletion experiments performed in drosophila and zebrafish, or research of protein partners have revealed the importance of IAPs in adaptive response to cellular stress, in cell proliferation, differentiation, signaling, motility and in immune response. This review discusses recent data that help understanding of cellular functions of IAPs.
year | journal | country | edition | language |
---|---|---|---|---|
2008-04-17 | Cell cycle (Georgetown, Tex.) |