6533b85cfe1ef96bd12bd226

RESEARCH PRODUCT

Modélisation sémantique et programmation générative pour une simulation multi-agent dans le contexte de gestion de catastrophe

Claire PrudhommeFrank BoochsChristophe CruzAna Roxin

subject

021110 strategic defence & security studies021103 operations researchPolitical science0211 other engineering and technologies02 engineering and technologyGeneral MedicineHumanities

description

La gestion de catastrophe nécessite une préparation collaborative entre les divers intervenants. Les exercices collaboratifs visent à entraîner les intervenants à appliquer les plans préparés ainsi qu’à identifier les problèmes et points d’améliorations potentiels. Ces exercices étant coûteux, la simulation informatique est un outil permettant d’optimiser la préparation à l’aide d’une plus grande diversité de cas. Cependant, les travaux de recherche centrés sur la simulation et la gestion de catastrophe sont spécialisés sur un problème spécifique plutôt que sur l’optimisation globale des plans préparés. Cette limite s’explique par le défi que constitue la réalisation d’un modèle de simulation capable de représenter et de s’adapter à une large diversité de plans provenant de diverses disciplines. Les travaux présentés dans cet article répondent à ce défi en adaptant le modèle de simulation en fonction des informations et des plans de gestion de catastrophes intégrés dans une base de connaissances. Le modèle de simulation généré est ensuite programmé automatiquement afin d’exécuter des expériences de simulation. Les résultats sont ensuite analysés afin de générer de nouvelles connaissances et d’enrichir les plans de gestion de catastrophe dans un cycle vertueux. Cet article présente une preuve de concept sur le plan national français NOVI (NOmbreuses VIctimes), pour lequel les expériences de simulation ont permis de savoir quel est l’impact de la répartition des médecins sur l’application du plan et d’identifier la meilleure répartition.

https://doi.org/10.3166/rig.2020.00102