6533b85cfe1ef96bd12bd33b

RESEARCH PRODUCT

Fluid–structure interaction of downwind sails: a new computational method

Tommaso IngrassiaFilippo CucinottaFelice SfravaraAntonino CirelloVincenzo Nigrelli

subject

Finite element methodComputer science020101 civil engineeringOcean Engineering02 engineering and technologyComputational fluid dynamicsMainsailInteractive sail designOceanographyWind speed0201 civil engineeringComputational fluid dynamicFluid–structure interactionMechanics of MaterialSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria Industrialebusiness.industryMechanical EngineeringSolverFinite element methodWind engineeringMechanics of MaterialsGennakerFluid–structure interaction Finite element method Computational fluid dynamics Gennaker Mainsail Interactive sail designConvergence problembusinessReynolds-averaged Navier–Stokes equationsFluid–structure interactionMarine engineering

description

The spreading of high computational resources at very low costs led, over the years, to develop new numerical approaches to simulate the fluid surrounding a sail and to investigate the fluid–structure interaction. Most methods have concentrated on upwind sails, due to the difficulty of implementing downwind sailing configurations that present, usually, the problem of massive flow separation and large displacements of the sail under wind load. For these reasons, the problem of simulating the fluid–structure interaction (FSI) on downwind sails is still subject of intensive investigation. In this paper, a new weak coupled procedure between a RANS solver and a FEM one has been implemented to study the FSI problem in downwind sailing configurations. The proposed approach is based on the progressive increasing of the wind velocity until reaching the design speed. In this way, the structural load is also applied progressively, therefore, overcoming typical convergence difficulties due to the non-linearity of the problem. Simulations have been performed on an all-purpose fractional gennaker. The new proposed method has been also compared with a classic weak FSI approach. Comparable results have been obtained in terms of flying shape of the gennaker and fluid-dynamic loads. The most significant characteristic of the proposed procedure is the easiness to find a solution in a very robust way without convergence problem, and also the capability to reduce the simulation time with regard to the computational cost.

10.1007/s00773-018-0533-7http://hdl.handle.net/11570/3121315