6533b85dfe1ef96bd12bdf7e

RESEARCH PRODUCT

Green Composites Based on PLA and Agricultural or Marine Waste Prepared by FDM

Marco MorrealeEmmanuel Fortunato GulinoAndrea MaioScaffaro RobertoGiuseppe Alaimo

subject

3D printing Additive manufacturing Aspect ratio Biocomposites Degradation Mechanical properties Opuntia ficus indica Polylactic acid Posidonia oceanica Water contact angle3d printed<i>Opuntia ficus indica</i>Materials sciencePolymers and PlasticsOpuntia ficusOrganic chemistry<i>Posidonia oceanica</i>mechanical propertiesengineering.materialBioplasticArticlechemistry.chemical_compoundQD241-441Polylactic acidFiller (materials)Composite materialpolylactic acidOpuntia ficus indicadegradationbiocompositeswater contact anglePosidonia oceanica3D printingGeneral ChemistryBiodegradationSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryengineeringDegradation (geology)aspect ratioadditive manufacturing

description

Three dimensional-printability of green composites is recently growing in importance and interest, especially in the view of feasibility to valorize agricultural and marine waste to attain green fillers capable of reducing bioplastic costs, without compromising their processability and performance from an environmental and mechanical standpoint. In this work, two lignocellulosic fillers, obtained from Opuntia ficus indica and Posidonia oceanica, were added to PLA and processed by FDM. Among the 3D printed biocomposites investigated, slight differences could be found in terms of PLA molecular weight and filler aspect ratio. It was shown that it is possible to replace up to 20% of bioplastic with low cost and ecofriendly natural fillers, without significantly modifying the processability and the mechanical performance of the neat matrix

https://doi.org/10.3390/polym13091361