6533b85dfe1ef96bd12bdfc4

RESEARCH PRODUCT

Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD: Anomalous Temperature Distributions from Commonly Used Thermostats.

Ville KorpelinToni KiljunenMarko MelanderMiguel A. CaroHenrik H. KristoffersenNisha MammenVesa ApajaKaroliina Honkala

subject

kemiatiheysfunktionaaliteorialämmönsäätimetGeneral Materials SciencemolekyylidynamiikkaPhysical and Theoretical Chemistry

description

Density functional theory-based molecular dynamics (DFT-MD) has been widely used for studying the chemistry of heterogeneous interfacial systems under operational conditions. We report frequently overlooked errors in thermostated or constant-temperature DFT-MD simulations applied to study (electro)catalytic chemistry. Our results demonstrate that commonly used thermostats such as Nose−Hoover, Berendsen, and simple velocity rescaling methods fail to provide are liable temperature description for systems considered. Instead, nonconstant temperatures and large temperature gradients within the different parts of the system are observed. The errors are not a “feature” of any particular code but a represent in several ab initio molecular dynamics implementations. This uneven temperature distribution, due to inadequate thermostatting, is well-known in the classical MD community, where it is ascribed to the failure in kinetic energy equipartition among different degrees of freedom in heterogeneous systems (Harvey et al. J. Comput. Chem. 1998, 726−740) and termed the flying ice cube effect. We provide tantamount evidence that interfacial systems are susceptible to substantial flying ice cube effects and demonstrate that the traditional Nose−Hoover and Berendsen thermostats should be applied with care when simulating, for example, catalytic properties or structures of solvated interfaces and supported clusters. We conclude that the flying ice cube effect in these systems can be conveniently avoided using Langevin dynamics. peerReviewed

10.1021/acs.jpclett.2c00230https://pubmed.ncbi.nlm.nih.gov/35297635