6533b85dfe1ef96bd12bdfc8
RESEARCH PRODUCT
Phonon-induced spin relaxation of conduction electrons in silicon crystals
C. GraceffaNicola PizzolatoD. Persano Adornosubject
Materials scienceSiliconCondensed matter physicsSpintronicsSpin polarizationPhononMonte Carlo methodsiliconchemistry.chemical_elementElectronSettore FIS/03 - Fisica Della MateriaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)electron spin relaxation.chemistrySpinplasmonicsSpin (physics)Monte Carlo simulationdescription
Experimental works managing electrical injection of spin polarization in n-type and p-type silicon have been recently carried out up to room-temperature. In spite of these promising experimental results, a comprehensive theoretical framework concerning the influence of transport conditions on phonon-induced electron spin depolarization in silicon structures, in a wide range of values of lattice temperature, doping concentration and amplitude of external fields, is still at a developing stage. In order to investigate the spin transport of conduction electrons in lightly doped n-type Si crystals, a set of semiclassical multiparticle Monte Carlo simulations has been carried out. The mean spin depolarization time and length of drifting electrons, heated by an electric field, have been calculated. A good agreement is found between our numerical findings and those computed by using different theoretical approaches and recent experimental results obtained in spin transport devices. Our Monte Carlo outcomes, in ranges of temperature and field amplitude yet unexplored, can be used as a guide for future experimental studies oriented towards a more effective optimization of room-temperature silicon-based spintronic devices.
year | journal | country | edition | language |
---|---|---|---|---|
2014-06-01 | 2014 International Workshop on Computational Electronics (IWCE) |