6533b85dfe1ef96bd12be78b

RESEARCH PRODUCT

Design of RC joints equipped with hybrid trussed beams and friction dampers

Salvatore PagnottaPiero ColajanniLidia La MendolaAlessia Monaco

subject

Finite element modelsComputer scienceShear force0211 other engineering and technologies020101 civil engineering02 engineering and technologyRC jointsSeismic energy dissipation0201 civil engineeringDamper021105 building & constructionmedicineTorqueCivil and Structural Engineeringbusiness.industryFriction dampersStiffnessStructural engineeringDissipationFinite element methodSettore ICAR/09 - Tecnica Delle CostruzioniCyclic behaviour; Earthquake design; Finite element models; Friction dampers; Hybrid steel-trussed-concrete beams; RC joints; Seismic energy dissipation; Structural designHybrid steel-trussed-concrete beamsStructural designBending momentCyclic behaviourEarthquake designmedicine.symptombusinessBeam (structure)

description

Abstract The challenge of this research consists in the first attempt to apply a dissipative friction connection to beam-to-column joints with semi-prefabricated Hybrid Steel-Trussed Concrete Beams (HSTCB) and RC pillars cast in-situ. Nowadays, HSTCBs are widely adopted in civil and industrial buildings and, therefore, it is required to evaluate their compliance with the capacity design criteria and their seismic energy dissipation capability. However, the design of the reinforcement of such beams usually lead to the adoption of large amount of steel within the panel zone which becomes potentially vulnerable to the effects of seismic cyclic actions and dramatically reduce the dissipation capacity of the entire structure. Therefore, the introduction of friction dampers in the HSTCB-to-column joints is investigated in order to evaluate the ability of the device in preventing the main structural elements from damage and limiting the cracking of the panel zone, thanks to the increase of the bending moment lever arm, which reduces the shear forces in the joint. Moreover, the proposed solution thoroughly investigates the connection between the friction device and the beam in order to ensure adequate strength and stiffness to the connection. The feasibility study is firstly conducted through the development of design criteria for the pre-dimensioning of the device and, successively, the proposed solution is validated through the generation of finite element models.

https://doi.org/10.1016/j.engstruct.2020.111442