6533b85dfe1ef96bd12be80b
RESEARCH PRODUCT
Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length
Martijn LenesAlicia Forment-aliagaHenk J. BolinkAndrea La RosaNazario MartínNazario MartínSalvatore FilipponeEugenio Coronadosubject
chemistry.chemical_classificationElectron mobilityFullereneMaterials scienceOpen-circuit voltage02 engineering and technologyGeneral ChemistryPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energyPolymer solar cell0104 chemical scienceslaw.inventionchemistryChemical engineeringlawSolar cellMaterials ChemistryOrganic chemistryCrystallization0210 nano-technologyShort circuitdescription
Diphenylmethanofullerenes (DPMs) show interesting properties as acceptors in polymer bulk heterojunction solar cells due to the high open circuit voltages they generate compared to their energy levels. Here we investigate the effect of reducing the alkane sidechain length of the DPMs from C12 to C6 in the properties of the solar cell. This change leads to an increase in the electron mobility, thus allowing for a lower fullerene content, which in turn results in an increase in the short circuit current and, finally, in an increase in the efficiency of the device (from 2.3 to 2.6%) due to the higher concentration of the more absorbing polymer in the film. Atomic force microscopy images and external quantum efficiencies suggest the absence of crystallization of the fullerene to be at the origin of the slightly reduced performance of DPMs versus the standard fullerene [6,6]-phenyl-C61-butyric acid methyl ester, implying that higher efficiencies could be possible with this class of fullerenes.
year | journal | country | edition | language |
---|---|---|---|---|
2011-01-01 |