6533b85dfe1ef96bd12be932
RESEARCH PRODUCT
Enhancement of lysine acetylation accelerates wound repair
Sabrina CastellanoMaurizio C. CapogrossiCarlo GaetanoStefania StrainoChiara CencioniFabio MartelliGianluca SbardellaFrancesco Spallottasubject
Skin repairWound HealingepigeneticsActivator (genetics)Short CommunicationkeratinocyteBiologyNitric OxideCell biologyHistone H3medicine.anatomical_structureepigenetics; pathology Wound Healing; lysine acetylation; PCAF; keratinocyte; Nitric OxideBiochemistryPCAFAcetylationPCAFSirtuinmedicinebiology.proteinpathologyGeneral Agricultural and Biological SciencesKeratinocyteWound healinglysine acetylationdescription
In physiopathological conditions, such as diabetes, wound healing is significantly compromised and chronic complications, including ulcers, may occur. In a mouse model of skin repair, we recently reported that wound treatment with Sirtuin activators and class I HDAC inhibitors induced keratinocyte proliferation and enhanced healing via a nitric oxide (NO) dependent mechanism. We observed an increase in total protein acetylation in the wound area, as determined by acetylation of α-tubulin and histone H3 Lysine 9. We reasoned that this process activated cell function as well as regulated gene expression to foster tissue repair. We report here that the direct activation of P300/CBP-associated factor (PCAF) by the histone acetylase activator pentadecylidenemalonate 1b (SPV-106) induced Lysine acetylation in the wound area. This intervention was sufficient to enhance repair process by a NO-independent mechanism. Hence, an impairment of PCAF and/or other GCN5 family acetylases may delay skin repair in physiopathological conditions.
year | journal | country | edition | language |
---|---|---|---|---|
2013-05-23 | Communicative & Integrative Biology |