6533b85efe1ef96bd12bf344

RESEARCH PRODUCT

Quantum dots functionalised artificial peptides bioinspired to the D1 protein from the Photosystem II of Chlamydomonas reinhardtii for endocrine disruptor optosensing

Pietro CalandraAmina AntonacciMehmet TuremisGabriele VaraniMaria Teresa GiardiViviana ScognamiglioFabrizio Lo CelsoDaniele ZappiGiampaolo Barone

subject

Photosystem IIIn silicoChlamydomonas reinhardtiiPlastoquinone02 engineering and technologyEndocrine DisruptorsPhotosynthesis01 natural sciencesOptosensorAnalytical Chemistrychemistry.chemical_compoundBiomimetic peptidesbiomimeticsAtrazineSettore CHIM/02 - Chimica FisicabiologyHerbicidesQuantum dots010401 analytical chemistryherbicide detectionPhotosystem II Protein Complexbiosensors021001 nanoscience & nanotechnologybiology.organism_classification0104 chemical sciencesEndocrine disruptorchemistryQuantum dotSettore CHIM/03 - Chimica Generale E InorganicaBiophysicsAtrazinePeptides0210 nano-technologyChlamydomonas reinhardtii

description

Herein we describe the design and synthesis of novel artificial peptides mimicking the plastoquinone binding niche of the D1 protein from the green photosynthetic alga Chlamydomonas reinhardtii, also able to bind herbicides. In particular, molecular dynamics (MD) simulations were performed to model in silico the behaviour of three peptides, D1Pep70-H, D1Pep70-S264K and D1Pep70-S268C, as genetic variants with different affinity towards the photosynthetic herbicide atrazine. Then the photosynthetic peptides were functionalised with quantum dots for the development of a hybrid optosensor for the detection of atrazine, one of the most employed herbicides for weed control in agriculture as well as considered as a putative endocrine disruptor case study. The excellent agreement between computational and experimental results self consistently shows resistance or super-sensitivity toward the atrazine target, with detection limits in the ?g/L concentration range, meeting the requirements of E.U. legislation.

10.1016/j.talanta.2020.121854http://hdl.handle.net/10447/457837