6533b85efe1ef96bd12bfb5e

RESEARCH PRODUCT

Estimating norms inC*-algebras of discrete groups

Volker Flory

subject

CombinatoricsDiscrete mathematicsCharacteristic function (probability theory)Discrete groupGeneral MathematicsOperator (physics)ConvolutionBounded operatorMathematics

description

LetG be a discrete group, letK be a finite subset ofG and let χ K be the characteristic function ofK. Then χ K acts by convolution as a bounded operator onL2(G). We will prove that the norm |||χ K ||| of this operator always satisfies the following estimate: $$|||\chi _{\rm K} |||^2 \leqq k + 2\sqrt {w\left( {k - 1} \right)\left( {k - w} \right)} + \left( {k - 2} \right)\left( {k - w} \right)$$ . Here .

https://doi.org/10.1007/bf01420287