6533b85efe1ef96bd12c0a7c

RESEARCH PRODUCT

Cautionary note on the two-step transformation to normality

Mikko RönkköMiguel Aguirre-urreta

subject

regressioanalyysitwo-step transformationnormaalijakauma

description

Templeton and Burney (2017) proposed a two-step normality transformation as a remedy for non-normally distributed data, which are commonly found in AIS research. We argue that, rather than transforming the data toward normality, researchers should first seek to analyze and understand the sources of non-normality. Using simulated datasets, we demonstrate three sources of non-normality and their consequences for regression estimation. We then demonstrate that the two-step transformation cannot solve any of these problems and that each source of non-normality can be handled with alternative, existing techniques. We further present two empirical examples to demonstrate these issues with real datasets. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-202005113126