6533b85ffe1ef96bd12c10a3

RESEARCH PRODUCT

Combined action of redox potential and pH on heat resistance and growth recovery of sublethally heat-damaged Escherichia coli

E. Sunyol I BertRémy CachonYves WachéChristophe RiondetP. GbaguidiGilles AlcarazCharles Diviès

subject

MESH: Oxidation-ReductionMESH : Escherichia coliMESH: Hydrogen-Ion ConcentrationHot TemperatureThermal resistanceMESH: Hot Temperaturemedicine.disease_causeApplied Microbiology and BiotechnologyRedox03 medical and health sciencesExponential growthMESH : Hydrogen-Ion Concentration[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyOxidizing agentEscherichia colimedicineGrowth rate[INFO.INFO-BT]Computer Science [cs]/Biotechnology[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyEscherichia coliComputingMilieux_MISCELLANEOUS030304 developmental biologyMESH : Oxidation-Reduction0303 health sciencesbiologyMESH: Escherichia coli030306 microbiologyChemistryGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationEnterobacteriaceaeCulture Media[INFO.INFO-BT] Computer Science [cs]/Biotechnology[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiochemistryMESH: Culture MediaBiophysicsMESH : Culture MediaMESH : Hot TemperatureOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyBacteriaBiotechnology

description

International audience; The combined effect of redox potential (RP) (from -200 to 500 mV) and pH (from 5.0 to 7.0) on the heat resistance and growth recovery after heat treatment of Escherichia coli was tested. The effect of RP on heat resistance was very different depending on the pH. At pH 6.0, there was no significant difference, whereas at pH 5.0 and 7.0 maximum resistance was found in oxidizing conditions while it fell in reducing ones. In sub-lethally heat-damaged cells, low reducing and acid conditions allowed growth ability to be rapidly regained, but a decrease in the redox potential and pH brought about a longer lag phase and a slower exponential growth rate, and even led to growth failure (pH 5.0, < or =-100 mV).

https://doi.org/10.1007/s002530051644