6533b85ffe1ef96bd12c1139
RESEARCH PRODUCT
Full‐thickness tissue engineered oral mucosa for genitourinary reconstruction: A comparison of different collagen‐based biodegradable membranes
Ronald E. UngerBilal Al-nawasAnnette HasenburgR SchwabCeline PfeiferWalburgis BrennerSandra Nezi-cahnMartin HellerStefan Walentasubject
Collagen Type IVScaffoldMaterials scienceSwineBiomedical EngineeringTenascinBiocompatible MaterialsMatrix (biology)Fibroblast migrationBiomaterials03 medical and health sciences0302 clinical medicineTissue engineeringAbsorbable ImplantsMaterials TestingmedicineAnimalsViability assayOral mucosaFibroblastCells CulturedTissue EngineeringTissue ScaffoldsbiologyKeratin-13Mouth MucosaEpithelial CellsMembranes ArtificialTenascin030206 dentistryFibroblastsPlastic Surgery ProceduresCoculture TechniquesUrogenital Surgical ProceduresCell biologymedicine.anatomical_structure030220 oncology & carcinogenesisbiology.proteindescription
Tissue engineering is a method of growing importance regarding clinical application in the genitourinary region. One of the key factors in successfully development of an artificially tissue engineered mucosa equivalent (TEOM) is the optimal choice of the scaffold. Collagen scaffolds are regarded as gold standard in dermal tissue reconstruction. Four distinct collagen scaffolds were evaluated for the ability to support the development of an organotypical tissue architecture. TEOMs were established by seeding cocultures of primary oral epithelial cells and fibroblasts on four distinct collagen membranes. Cell viability was assessed by MTT-assay. The 3D architecture and functionality of the tissue engineered oral mucosa equivalents were evaluated by confocal laser-scanning microscopy and immunostaining. Cell viability was reduced on the TissuFoil E® membrane. A multi-stratified epithelial layer was established on all four materials, however the TEOMs on the Bio-Gide® scaffold showed the best fibroblast differentiation, secretion of tenascin and fibroblast migration into the membrane. The TEOMs generated on Bio-Gide® scaffold exhibited the optimal cellular organization into a cellular 3D network. Thus, the Bio-Gide® scaffold is a suitable matrix for engineering of mucosa substitutes in vitro.
year | journal | country | edition | language |
---|---|---|---|---|
2020-02-16 | Journal of Biomedical Materials Research Part B: Applied Biomaterials |