6533b85ffe1ef96bd12c11be
RESEARCH PRODUCT
Silica Entrapment for Significantly Stabilized, Energy-Conducting Light-Harvesting Complex (LHCII)
Harald PaulsenSebastian RoederStephan Hobesubject
ChromatographyMolecular massChemistryColloidal silicaLight-Harvesting Protein ComplexesPhotosystem II Protein ComplexSurfaces and InterfacesSilicon DioxideCondensed Matter PhysicsPhotosynthesisLight-harvesting complexB vitaminsPigmentPolymerizationYield (chemistry)visual_artElectrochemistryBiophysicsvisual_art.visual_art_mediumGeneral Materials ScienceSpectroscopydescription
The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants consists of a membrane protein and numerous noncovalently bound pigments that make up about one-third of the molecular mass of the pigment-protein complex. Due to this high pigment density, LHCII is potentially interesting as a light-harvesting component in synthetic constructs. However, for such applications its stability needs to be significantly improved. In this work, LHCII was dramatically stabilized by enclosing it within polymerizing colloidal silica. The entrapped LHCII stayed functional at 50 °C for up to 24 h instead of a few minutes in detergent solution and clearly showed energy transfer between complexes. Entrapment yield was enhanced by a polycationic peptide attached to the N terminus. Both the extent of stabilization and the yield of entrapment strongly increased with decreasing diameters of the silica particles.
year | journal | country | edition | language |
---|---|---|---|---|
2014-11-17 | Langmuir |