6533b85ffe1ef96bd12c1337
RESEARCH PRODUCT
Transfer Learning with Convolutional Networks for Atmospheric Parameter Retrieval
Allan Aasbjerg NielsenGustau Camps VallsValero LaparraDavid Malmgren-hansensubject
FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceFeature extraction0211 other engineering and technologiesTranfer learningFOS: Physical sciences02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometercomputer.software_genreConvolutional neural networkMachine Learning (cs.LG)0202 electrical engineering electronic engineering information engineeringInfrared measurements021101 geological & geomatics engineeringArtificial neural networkStatistical modelNumerical weather predictionParameter retrievalPhysics - Atmospheric and Oceanic PhysicsKernel method13. Climate actionAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networks020201 artificial intelligence & image processingData miningcomputerCurse of dimensionalitydescription
The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP). Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models. Statistical models performance is compromised because of the extremely high spectral dimensionality and the high number of variables to be predicted simultaneously across the atmospheric column. All this poses a challenge for selecting and studying optimal models and processing schemes. Earlier work has shown non-linear models such as kernel methods and neural networks perform well on this task, but both schemes are computationally heavy on large quantities of data. Kernel methods do not scale well with the number of training data, and neural networks require setting critical hyperparameters. In this work we follow an alternative pathway: we study transfer learning in convolutional neural nets (CNN s) to alleviate the retraining cost by departing from proxy solutions (either features or networks) obtained from previously trained models for related variables. We show how features extracted from the IASI data by a CNN trained to predict a physical variable can be used as inputs to another statistical method designed to predict a different physical variable at low altitude. In addition, the learned parameters can be transferred to another CNN model and obtain results equivalent to those obtained when using a CNN trained from scratch requiring only fine tuning.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 | IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium |